翻訳と辞書
Words near each other
・ Szeged Synagogue
・ Szeged witch trials
・ Szegedi AK
・ Szegedi EAC
・ Szegedi Honvéd SE
・ Szegedi VE
・ Szegedi VSE
・ Szegedi VSE Stadion
・ Szegedin Highflyer
・ Szegerdő
・ Szeghalom
・ Szegi
・ Szegilong
・ Szegvár
・ Szegő inequality
Szegő kernel
・ Szegő limit theorems
・ Szegő polynomial
・ Szekely Flying Dutchman
・ Szekely SR-3
・ Szekeres
・ Szekeres snark
・ Szekler National Council
・ Szekler Sabbatarians
・ Szekszárd
・ Szekszárd Abbey
・ Szelejewo
・ Szelejewo Drugie
・ Szelejewo Pierwsze
・ Szeleste


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Szegő kernel : ウィキペディア英語版
Szegő kernel
In the mathematical study of several complex variables, the Szegő kernel is an integral kernel that gives rise to a reproducing kernel on a natural Hilbert space of holomorphic functions. It is named for its discoverer, the Hungarian mathematician Gábor Szegő.
Let Ω be a bounded domain in C''n'' with ''C''2 boundary, and let ''A''(Ω) denote the set of all holomorphic functions in Ω that are continuous on \overline. Define the Hardy space ''H''2(∂Ω) to be the closure in ''L''2(∂Ω) of the restrictions of elements of ''A''(Ω) to the boundary. The Poisson integral implies that each element ''ƒ'' of ''H''2(∂Ω) extends to a holomorphic function ''Pƒ'' in Ω. Furthermore, for each ''z'' ∈ Ω, the map
:f\mapsto Pf(z)
defines a continuous linear functional on ''H''2(∂Ω). By the Riesz representation theorem, this linear functional is represented by a kernel ''k''''z'', which is to say
:Pf(z) = \int_ f(\zeta)\overline\,d\sigma(\zeta).
The Szegő kernel is defined by
:S(z,\zeta) = \overline,\quad z\in\Omega,\zeta\in\partial\Omega.
Like its close cousin, the Bergman kernel, the Szegő kernel is holomorphic in ''z''. In fact, if ''φ''''i'' is an orthonormal basis of ''H''2(∂Ω) consisting entirely of the restrictions of functions in ''A''(Ω), then a Riesz–Fischer theorem argument shows that
:S(z,\zeta) = \sum_^\infty \phi_i(z)\overline.
==References==

*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Szegő kernel」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.